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ABSTRACT

The aim of the present study is to estimate effective diahaline turbulent

salinity fluxes and diffusivities in numerical model simulations of estuarine

scenarios. The underlying method is based on a quantification of salinity mix-

ing per salinity class, which is shown to be twice the turbulent salinity trans-

port across the respective isohaline. Using this relation, the recently derived

universal law of estuarine mixing, predicting that average mixing per salinity

class is twice the respective salinity times the river run-off, can be directly de-

rived. The turbulent salinity transport is accurately decomposed into physical

(due to the turbulence closure) and numerical (due to truncation errors of the

salinity advection scheme) contributions. The effective diahaline diffusivity

representative for a salinity class and an estuarine region results as the ratio of

the diahaline turbulent salinity transport and the respective (negative) salinity

gradient, both integrated over the isohaline area in that region and averaged

over a specified period. With this approach, the physical (or numerical) diffu-

sivities are calculated as half of the product of physical (or numerical) mixing

and the isohaline volume, divided by the square of the isohaline area. The

method for accurately calculating physical and numerical diahaline diffusivi-

ties is tested and demonstrated for a three-dimensional idealized exponential

estuary. As a major product of this study, maps of the spatial distribution of

the effective diahaline diffusivities are shown for the model estuary.
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1. Introduction27

The circulation and hydrography of estuaries is largely determined by turbulent mixing. This has28

been impressively demonstrated by the laboratory experiments conducted by Linden and Simpson29

(1986), generating lock exchange flows under the impact of air bubble-induced turbulence. They30

could show that strong turbulence slowed down the exchange flow driven by gravitational forces31

and used this as an explanation for the tidal modulation of estuarine circulation (Linden and Simp-32

son 1988). Earlier, using a simple analytical model, Hansen and Rattray (1965) quantified how the33

intensity of estuarine exchange flow is inversely proportional to specified constant vertical eddy34

viscosity and diffusivity. In an idealized numerical model study, Hetland and Geyer (2004) showed35

how the length of an estuary, i.e., the longitudinal extent of the brackish water zone, depends on36

a prescribed eddy viscosity and diffusivity: high eddy coefficients result in short estuaries and37

vice-versa. This process is reflected by observations and model results for many estuaries: Dur-38

ing phases of high turbulence (spring tides), vertical stratification is reduced due to more upright39

isohaline surfaces, resulting in shorter estuaries and vice versa during low turbulence (neap tide),40

see e.g., Warner et al. (2005) for the Hudson River Estuary and Li et al. (2018) for the Changjiang41

River Estuary.42

In contrast to local and instantaneous diffusivities as parameterized in ocean models by turbu-43

lence closures (see, e.g., Large et al. 1994; Umlauf and Burchard 2005), effective diffusivities are44

often calculated to analyze diffusive transport in water bodies of different characteristics. The45

latter are generally calculated as the (negative) ratio of turbulent flux and tracer gradient, both in-46

dividually averaged over a surface (e.g., an isopycnal) and over time, such they result as weighted47

integral averages of the local and instantaneous diffusivities. The substantially inhomogeneous48

distribution of eddy diffusivity (low in the interior, high at sloping bottoms) has the consequence49
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that effective diffusivities on various types of basins are easily an order of magnitude larger than50

the local ones observed in the interior, such as found, e.g., for the world ocean (Waterhouse et al.51

2014), the Baltic Sea (Holtermann et al. 2012) or lakes (Goudsmit et al. 1997).52

In ocean models, diffusivities are typically conterminated by numerical spurious mixing by53

tracer advection schemes, such that water mass transformations parameterized by carefully cal-54

ibrated turbulence closure models might be overridden by numerical diffusion. Various methods55

have been proposed to estimate effective diffusivities in ocean models, either based on the in-56

crease of background potential energy (Griffies et al. 2000; Ilıcak et al. 2012), on numerical tracer57

releases (Getzlaff et al. 2010, 2012) or on water mass transformation analysis evaluating overturn-58

ing streamfunctions (Lee et al. 2002; Megann 2018). All these methods share the drawback that59

the analysis averages effective diffusivities over large regions. Methods for locally analyzing phys-60

ical and numerical mixing based on decay of tracer variance have been proposed by Burchard and61

Rennau (2008) and Klingbeil et al. (2014). These methods however do not yet allow computing62

diapycnal diffusivities.63

In estuaries, effective longitudinal diffusivities, i.e., the ratio of longitudinal turbulent salinity64

fluxes and salinity gradients individually averaged over vertical transects, are several orders of65

magnitude larger than vertical diffusivities (Fischer 1976). This is mainly due to the process66

of shear dispersion (Taylor 1954; Young and Jones 1991), a combination of vertical diffusion67

and vertical shear. In order to reproduce salt intrusion, vertically or cross-sectionally integrated68

estuarine models which do not resolve tidal shear dispersion do therefore need to parameterize this69

process by means of large values of longitudinal diffusivity (Uncles and Stephens 1990; Ralston70

et al. 2008).71

In early coastal ocean models, horizontal diffusivity was applied to suppress numerically in-72

duced oscillations (Blumberg and Mellor 1987). Recent models use monotone advection schemes73
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including implicit numerical diffusion, such that explicit horizontal diffusion is not needed (see,74

e.g., Hofmeister et al. 2011; Ralston et al. 2017). The numerical mixing caused by these advec-75

tion schemes as well as the physical mixing due to the turbulence closure model can be quantified76

as local and instantaneous dissipation of salinity variance (Burchard and Rennau 2008; Klingbeil77

et al. 2014). In some estuarine model simulations, the numerical mixing can account for a sub-78

stantial part of the total mixing, such that a re-tuning of the turbulence closure is required to obtain79

satisfactory salinity distributions (Ralston et al. 2017).80

In estuaries, density is largely determined by salinity, although for low-inflow estuaries, specif-81

ically in summer, also temperature might contribute to density stratification (Largier et al. 1996).82

Therefore, for typical strong-inflow estuaries, temperature variations are often neglected when an-83

alyzing the dynamics, with the consequence that isohaline and isopycnal surfaces are assumed to84

be identical. In recent years, one focus of estuarine physical studies has been the analysis of salin-85

ity mixing, defined as the decay of salinity variance (Burchard and Rennau 2008; Burchard et al.86

2009). Based on the Total Exchange Flow (TEF) analysis framework introduced by MacCready87

(2011), the relation between the exchange flow and integrated estuarine salinity mixing of riverine88

fresh water and oceanic salt water was studied by several authors (Wang et al. 2017; MacCready89

et al. 2018; Burchard et al. 2019). To better understand estuarine dynamics, analysis of water mass90

transformations on isohaline surfaces (Walin 1977; MacCready and Geyer 2001; MacCready et al.91

2002; Hetland 2005) is often advantageous over an analysis in geographical coordinates, since92

it is not conterminated by adiabatic (advective) processes such as tidal oscillations. Using the93

definition of mixing per salinity class (Wang et al. 2017), i.e., mixing integrated over infinitesi-94

mal isohaline volumes, Burchard (2020) could show that for long time integrations it converges95

towards twice the product of the respective salinity times the freshwater run-off. By using the96

analysis of physical and numerical mixing introduced by Klingbeil et al. (2014), the total mixing97
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per salinity class could be decomposed into physical and numerical contributions, where the latter98

could become negative at times when anti-diffusive advection schemes are applied.99

Due to the pivotal role of eddy diffusivity in estuaries, the aim of the present study is to estimate100

diahaline turbulent salinity fluxes and diffusivities in an estuarine numerical model simulation.101

This will be achieved by exploiting the recent concept of mixing on isohaline surfaces.102

2. Mathematical derivation103

The aim of this section is to review and further derive the isohaline framework within which104

the diahaline turbulent transport and the effective diahaline diffusivities are defined. The basic105

definitions of instantaneous mixing, fluxes and diffusivities are given in Sec. 2a. The isohaline106

geometry including isohaline surfaces and volumes is introduced in Sec. 2b. Based on this, diaha-107

line mixing, transport and diffusivities are defined in Sec. 2c. Finally, in Sec. 2d, diahaline mixing108

relations and effective diahaline diffusivities for long-term averaged estuarine states are discussed109

in the light of these new results.110

a. Salinity mixing and diahaline diffusivity111

The basic physical equations from which the present theory is derived are the continuity equation112

(volume conservation, assuming incompressibility of sea water),113

~∇ ·~u = 0, (1)

and the salinity equation (salt conservation),114

∂ts+~∇ · (~us)+~∇ · ~F s
diff = 0, (2)
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where ~u is the velocity vector, s is absolute salinity, and ~F s
diff = (−Kh∂xs,−Kh∂ys,−Kv∂zs) is the115

turbulent (diffusive) salinity flux vector in Cartesian coordinates, where Kh and Kv are horizontal116

and vertical eddy diffusivities, respectively.117

The salinity mixing per unit volume, χ , is defined as the local loss of salinity variance (Burchard118

and Rennau 2008),119

χ =−2 ~F s
diff ·~∇s = 2Kh(∂xs)2 +2Kh(∂ys)2 +2Kv(∂zs)2. (3)

It should be noted that the single components of the turbulent salinity flux vector are down-120

gradient, but due to the non-isotropic eddy diffusivity (Kh�Kv) the entire vector itself is generally121

not down-gradient, and thus not orthogonal to the isohaline surface, see Fig. 1 and the discussion122

below.123

In ocean models, the horizontal turbulent fluxes are typically aligned with the vertical model124

coordinate, e.g., with constant z-levels for geopotential models, constant σ -levels for models with125

σ -coordinates or constant density for isopycnal models. The vertical component of the turbulent126

fluxes is oriented either orthogonal to geopotential surfaces or orthogonal to isopycnal surfaces.127

Since typically isopycnal surfaces are rather flat, the difference between the latter two is generally128

negligible. In non-isopycnal models, the rotation of horizontal turbulent fluxes into isopycnal129

direction causes numerical problems (Griffies et al. 1998; Beckers et al. 1998) and is therefore130

sometimes avoided.131

For any isohaline surface, we define the total (advective plus diffusive) diahaline salinity flux as132

f s = f s
adv + f s

diff = uns−Kn∂ns, (4)

where un = ~u ·~n is the outgoing velocity with the normal vector ~n = ~∇s/
∣∣∣~∇s
∣∣∣ (pointing towards133

higher salinity), ∂ns = ~∇s ·~n denotes the salinity gradient normal to the isohaline surface, and Kn134

is the diahaline diffusivity. Note that the diahaline turbulent salinity flux, f s
diff =

~F s
diff ·~n, is the135
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orthogonal projection of the turbulent salinity flux vector to the isohaline surface, see Fig. 1 for an136

illustration. The definition (3) of the mixing per unit volume and the definition (4) of the diahaline137

turbulent salinity flux both imply an alternative expression for the diahaline diffusivity,138

Kn =−
f s

diff

∂ns
=

Kh(∂xs)2 +Kh(∂ys)2 +Kv(∂zs)2

(∂ns)2 =
1
2 χ

(∂ns)2 , (5)

which means that the diahaline diffusivity depends on the salinity gradients. A consequence of this139

is that the diahaline diffusivities are different for each tracer although the horizontal and vertical140

diffusivities are not.141

b. Isohaline volumes142

We consider here a time-averaged estuarine volume V (S) bounded in seaward direction by an143

isohaline of arbitrary salinity S with area A(S), i.e., the volume contains estuarine water masses144

with a salinity s with s ≤ S. The volume is further bounded by the air-sea interface at z = η the145

river boundary area Ar located at zero salinity and zero salinity gradient, and the impermeable sea146

bottom at z =−H (Fig. 2). The time-averaging operator is introduced for any function X(t) as147

〈X〉(t) = 1
T

∫ t+T/2

t−T/2
X(t ′)dt ′, (6)

where T is the averaging interval. Note, that for the limit of T → 0, the non-averaged, instanta-148

neous value 〈X〉(t) = X(t) is obtained. In the following, we generally drop the argument t for149

time-averaged quantities. With this, V (S) is formally defined as150

V (S) =
〈∫

V (Smax)
H [S− s(x,y,z, t)]dV

〉
, (7)

with the heavyside function151

H [x] =


0 for x < 0,

1 for x≥ 0.
(8)
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The isohaline volume had been defined by Walin (1977) as the infinitesimal volume per salinity152

class, for which different formulations can be used:153

v(S) = ∂SV (S) = ∂S

∫ S

0
v(S′)dS′ =

〈∫
A(S)

(∂ns)−1 dA
〉
, (9)

where (∂ns)−1 is the local and instantaneous infinitesimal thickness of the isohaline. Fig. 3 illus-154

trates the definitions of volume per salinity class and thickness per salinity class by means of a155

finite salinity increment ∆S.156

It should be noted that the isohaline volumes defined here depend on salinity S only. To retrieve157

information how these properties are distributed in horizontal space, the local thickness per salinity158

class, bloc, and the accumulated local thickness with salinities ≤ S, Bloc, can be defined as159

bloc(S,x,y) = ∂SBloc(S,x,y) with Bloc(S,x,y) =
〈∫

η(x,y,t)

−H(x,y)
H [S− s(x,y,z, t)]dz

〉
. (10)

This allows for two different representations of the time-averaged isohaline depths.160

We define the TEF-based mean isohaline surface height as161

zTEF(S,x,y) = 〈η〉(x,y)−Bloc(S,x,y). (11)

The isohaline surface position can also be defined on the basis of the thickness-weighted time-162

averaged salinity distribution (obtained at constant σ levels, see Klingbeil et al. 2019), which is163

denoted as zEu(S,x,y) here. The isohaline height zTEF(S) is motivated by the Total Exchange Flow164

(TEF) analysis framework proposed by MacCready (2011) and indicates an isohaline position165

inside the water column for all locations (x,y) where the salinity S has occurred during the aver-166

aging period for a finite period of time. In contrast, zEu(S) is the position of the isohaline S in the167

thickness-weighted salinity field.168

For both representations, isohalines with salinities larger than all salinities in the water col-169

umn are formally identical to the bottom coordinate and isohalines with salinities smaller than170
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all salinities in the water column are formally identical to the mean surface position, 〈η〉. And171

for both, zTEF(S,x,y) and zEu(S,x,y), isohaline volumes are identical. However, both representa-172

tions of isohaline positions generally result in different isohaline areas, which will be denoted as173

aTEF(S) and aEu(S), respectively. Generally, the TEF-based isohaline surface will be larger than174

the Eulerian mean one. With this, bTEF(S) = v(S)/aTEF(S) and bEu(S) = v(S)/aEu(S) are the area-175

averaged infinitesimal thicknesses per salinity class of the TEF-based and Eulerian mean salinity176

distributions, respectively. The area-averaged salinity gradients are then estimated as (bTEF(S))−1
177

and (bEu(S))−1, respectively.178

It should be noted that the calculations of the isohaline areas and the derived isohaline thick-179

nesses are correct for the projections of the isohalines to geopotential surfaces. Increased areas180

and decreased thicknesses due to sloping isohalines are not taken into consideration. However,181

these errors are assumed to be small due to the small aspect ratio between vertical and horizon-182

tal scales in estuaries and the resulting small slopes of the isohalines. In numerical models, it is183

possible to correct for these errors, but for simplicity we refrain here to do so.184

We consider the TEF-based representations of the isohaline structure as the physically sound185

one, since it indicates to which location in the (S,x,y)-space volume and other properties, such186

as mixing (see Sec. 2.c), are associated to. Therefore, from here onwards, the isohaline area is187

denoted as a = aTEF(S) and the isohaline thickness as b = bTEF(S).188

c. Diahaline transport189

The transport of volume and salinity through the isohaline surface is denoted as:190

Fs(S) =
〈∫

A(S)
f s dA

〉
, Fs

adv(S) =
〈∫

A(S)
fadvsdA

〉
, Fs

diff(S) =
〈∫

A(S)
f s

diff dA
〉
, (12)
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with the total salinity transport being denoted as Fs = Fs
adv +Fs

diff and the diahaline salinity fluxes191

defined in (4).192

According to Burchard (2020), the mixing per salinity class m(S) is defined as193

m(S) = ∂SM(S) with M(S) =
∫ S

0
m
(
S′
)

dS′ =
〈∫

V (S)
χ dV

〉
, (13)

with the integrated salinity mixing M(S). Note that (13) has already been formulated by Wang194

et al. (2017) for the vertical component of mixing, see their eq. (4.3). Combining (5) and (9), the195

mixing per salinity class can also be formulated as196

m =

〈∫
A(S)

(∂ns)−1
χ dA

〉

=

〈∫
A(S)

(∂ns)−1 2Kn (∂ns)2 dA
〉

= 2
〈∫

A(S)
Kn∂nsdA

〉

= −2Fs
diff.

(14)

With this, the mixing per salinity class is twice the (negative) diahaline turbulent salinity transport.197

This also means that the mixing integrated over the volume V (S) can be expressed by means of198

integrating the turbulent diahaline salinity transport through all isohalines with salinities smaller199

than or equal to S:200

−2
∫ S

0
Fs

diff dS′ = M(S), (15)

see eq. (4.4) by Wang et al. (2017). Eq. (14) allows for easy calculation of diahaline turbulent201

transport and effective diahaline diffusivities including their decomposition into physically and202

numerically induced components (see below). This formulation does also allow formulating the203
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recently proposed universal law of estuarine mixing (Burchard 2020) without using a budget equa-204

tion for the salinity variance or the integrated salinity square, see Sec. 2d.205

Following Klingbeil et al. (2014), the mixing per unit volume χ can be exactly decomposed into206

physical and numerical contributions, such that consequently also the mixing per isohaline volume207

can be decomposed:208

m = mphy +mnum. (16)

Motivated by the relations in (5), the effective total diahaline diffusivity, Kn, can be calculated by209

dividing the negative mean diahaline turbulent flux averaged over the isohaline surface,−Fs
diff/a =210

1
2m/a, by the mean diahaline salinity gradient, b−1 = a/v:211

Kn =
−Fs

diff/a
b−1 =

1
2

mv
a2 . (17)

Using (16), the effective diahaline diffusivity can be split into physical and numerical parts:212

Kphy
n =

1
2

mphyv
a2 , Knum

n =
1
2

mnumv
a2 . (18)

Details of the discretization of (18) are given in section 3.213

d. Diahaline mixing relations214

As shown in Burchard (2020) for tidally periodic estuaries averaged over a tidal period or general215

estuaries averaged over a long period, the down-estuarine advective salt transport through an iso-216

haline of salinity S is Fs
adv = SQr, where Qr is the river run-off. Under these equilibrium conditions,217

the down-estuarine advective salt transport must be exactly balanced by an opposing up-estuarine218

diffusive salt transport Fs
diff =−Fs

adv. Using (14), we obtain m =−2Fs
diff = 2Fs

adv = 2SQr, stating that219

under equilibrium conditions the mixing per salinity class is twice the product of the river run-220

off times the salinity of the respective isohaline. This has been recently formulated by Burchard221
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(2020) as the universal law of estuarine mixing, derived by combining volume-integrated budget222

equations for volume, salinity and salinity squared.223

3. Discretization224

The numerical model calculates for each time step n and for each grid box i,k discrete values225

for the layer thickness, hn
i,k, the salinity, sn

i,k, the physical mixing per unit volume, χ
phy,n
i,k (due to226

diffusion with eddy diffusivity calculated by the turbulence closure scheme), and the numerical227

mixing per unit volume, χ
num,n
i,k (due to truncation errors of the salinity advection scheme). The228

latter two quantities are calculated by means of the method proposed by Klingbeil et al. (2014)229

as local discrete variance decay due to diffusion and advection, respectively. Furthermore, the230

horizontal grid cell area is kept constant in time and is denoted as Ai. The index i is here the231

counter for the two-dimensional horizontal grid which may be structured or unstructured, and k is232

the vertical counter of layers.233

For the binning into salinity classes, the salinity range smin ≤ s ≤ smax is discretized into J234

equidistant salinity intervals ∆s = (smax− smin)/J. The time-averaged volume per salinity class,235

v j, is then calculated for each water column i as236

vi, j =
Ai

N∆s ∑
k,n

{s j−1≤sn
i,k<s j}

hn
i,k, with j =

⌈ sn
i,k− smin

smax− smin
J
⌉
, (19)

where s j = smin + j∆s and dxe is the ceiling function to any non-negative real number x, j with237

1 ≤ j ≤ J is the counter for the salinity class and N is the number of time steps. With (19), a238

vector of salinity classes j is defined for each water column i which is then subsequently filled in239

a binning process with subvolumes Aihn
i,k and averaged by the number of time steps N. Division240

by ∆s is necessary in (19), because vi, j is volume per salinity class.241
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The physical and numerical mixing per salinity class, mphy
i, j and mnum

i, j , are calculated accordingly242

as243

mphy
i, j =

Ai

N∆s ∑
k,n

{s j−1≤sn
i,k<s j}

χ
phy,n
i,k hn

i,k, mnum
i, j =

Ai

N∆s ∑
k,n

{s j−1≤sn
i,k<s j}

χ
num,n
i,k hn

i,k. (20)

Let A = ∑i∈I Ai be a specifically defined sub-area (e.g., an estuarine segment or the entire estuary)244

composed of all areas Ai with the index i included in the set I. Then, following (18), with (19) and245

(20), the physical and numerical effective diahaline diffusivities for A(S = s j) are calculated as246

Kphy
j =

∑i∈I mphy
i, j ·∑i∈I vi, j

2
(
∑i∈I ai, j

)2 , Knum
j =

∑i∈I mnum
i, j ·∑i∈I vi, j

2
(
∑i∈I ai, j

)2 , (21)

with the isohaline area247

ai, j =


Ai, if vi, j > 0

0, else.
(22)

With (22), a water column with an empty salinity class j is associated with zero isohaline area.248

This may happen, when a salinity class is outside the range of salinities occurring in a water249

column (such as ocean salinity in permanently brackish water). This may also happen for high250

numbers of salinity classes and low numbers of salinity values (due to low vertical and temporal251

resolution or short averaging periods). In both cases, such empty salinity classes pose no problem.252

If a salinity class does not occur in any water column of the chosen sub-area, the effective diahaline253

diffusivities for that salinity class are not defined. It should be mentioned here, that A(S = s j) is254

the projection of the isohaline surface to geopotential surfaces, an error that is small due to the255

small aspect ratio of estuaries (see also the results of Sec. 4) and it is identical for the calculation256

of both, the effective physical and numerical diahaline diffusivity.257
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4. Idealized model experiments258

To demonstrate the calculation of effective diahaline diffusivities and other mixing-related prop-259

erties, we simulate an idealized estuary, exponentially widening towards the open ocean (Fig. 4).260

The estuary is situated at a latitude of 53.5◦N and has a length of 100 km, a central navigational261

channel of 15 m depth, and lateral shoals with an average depth of 3 m. At the mouth, the estuary262

is 81 km wide to allow for the development of a river plume, and decreases in width exponentially263

in landward direction. The minimum width of the estuarine channel is set to 1 km. The model is264

forced at the open boundary with a mono-chromatic semi-diurnal tide of 2.0 m amplitude and a265

constant ocean salinity of 35 g/kg. At the river end of the estuary, a constant freshwater run-off of266

Qr = 700 m3s−1 is prescribed. There is no wind forcing applied.267

For the simulations, the General Estuarine Transport Model (GETM, www.getm.eu, Burchard268

and Bolding 2002) has been applied, a primitive equation coastal ocean model model using general269

vertical coordinates and explicit mode splitting (Klingbeil et al. 2018). It is coupled to the turbu-270

lence module of the General Ocean Turbulence Model (GOTM, www.gotm.net, Burchard and271

Bolding 2001; Umlauf and Burchard 2005), using the k-ε two-equation turbulence closure model272

with an algebraic second-moment closure by Cheng et al. (2002). Explicit horizontal diffusion is273

not applied.274

A curvi-linear grid is constructed with 200 cells in longitudinal direction and 30 cells across275

the estuary. In the vertical, 30 σ -layers are used with some grid refinement towards the bottom.276

For the temporal discretization, each tidal cycle is resolved with 5000 baroclinic time steps of277

∆t = 8,9428 s, each of them split into 10 barotropic time steps. The advection terms in the momen-278

tum, salinity and turbulence budgets are discretized by means of the TVD-SPL-max-1/3 scheme279

15



(Waterson and Deconinck 2007), known for its minimum numerical mixing (Mohammadi-Aragh280

et al. 2015), combined with Strang splitting (Pietrzak 1998).281

The simulation is started from rest (zero surface elevation, zero velocity, constant salinity s = 15282

g/kg) until a quasi-periodic state is reached, still including non-tidal oscillations such as internal283

waves of frequencies not matching the tidal frequency. Ten tidal periods of this quasi-periodic284

state are analyzed to calculate representative tidally averaged properties.285

A snapshot of the salinity distribution at high water is shown in Fig. 4. A salt wedge is reaching286

up to kilometer 70 of the estuary with a strong near-surface stratification downstream of it. A287

river plume veering to the north (positive y-direction) due to Earth rotation is visible in the outer288

estuary. The lateral salinity structure is complex due to lateral circulation (which is not shown).289

The salinity fields from the TEF-based averaging and the thickness-weighted averaging are290

shown in Fig. 5 for the center line of the estuary (y = 0). It should be noted that both fields291

do not show the average salinity at the specific coordinate in x-z space where they have occurred.292

For each water column, the TEF-based average salinity is located at zTEF(S) defined in (11). With293

this, the lowest salinity occurring in that water column is located at the time-averaged surface, and294

the highest salinity is located at the bottom. As for the thickness-weighted averaging, the salinity295

field has first been averaged on σ -layers with weighting by the changing water depth, and then296

the averaged salinity values have been associated with the average vertical position of the respec-297

tive σ layer (see the discussion by Klingbeil et al. 2019). Clearly, the TEF-based isohalines are298

more widespread, i.e., have a larger surface, than the isohalines from thickness-averaging. For299

instance, the TEF-based isohaline with S = 25 g/kg at y = 0 (marked in red) is twice as long300

as the thickness-averaged isohaline (30 km versus 15 km). This is because whenever a specific301

salinity has occurred within a water column, the respective isohaline extends to this horizontal po-302

sition. In contrast, thickness-weighted averaging might not show this salinity in a water column.303
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Despite the substantially different appearances of the two salinity fields, the associated isohaline304

volumes are the same, see the discussion in Sec. 2b. Here, it can also be seen how small the305

error of approximating the isohaline area by its projection to geopotential coordinates is: for the306

example of the 25-g/kg-isohaline based on TEF (Fig. 5a), the relative error of the isohaline area307

is 1−L/(H2 +L2)1/2 = 2.5 · 10−7, with the length of the projected isohaline of L = 30 km and308

the centerline depth of H = 15 m, when assuming a flat bottom and a planar approximation of the309

isohaline.310

Since physical lateral diffusivity is set to zero in the model experiment, it is expected according311

to (5) and (17) that the effective physical diahaline diffusivities, Kphy
n , are a weighted average of312

the vertical diffusivities, Kv, occurring in a specific salinity class. This should also be the case for313

the effective total diahaline diffusivities, Kn, when physical mixing is dominating over numerical314

mixing. It is therefore instructive to inspect the distributions of Kv for different situations. This315

is shown in Fig. 6 as snapshots during full flood and full ebb for the centerline of the estuary.316

During flood, due to a destabilization of the lower half of the water column in the salt wedge317

vertical diffusivity is enhanced in this region with values of around Kv = 10−2 m2s−1. During318

ebb, marginal shear instability is dominating in parts of the salt wedge (with salinities above 12319

g/kg) such that vertical diffusivities are still elevated, but when strong stratification occurs too320

close to the bed, the eddy diffusivity in the water column above drops to values of below 10−5
321

m2s−1. When isohalines are flat, diffusivities are mostly below 10−5 m2s−1. Since flat regions of322

the isohalines are associated with the largest portion of area, it is expected that effective physical323

diahaline diffusivities are of the order of 10−5 m2s−1. In the well-mixed regions upstream (near324

s = 0 g/kg) and downstream (near s = 35 g/kg) of the salt wedge, diffusivities reach high values325

of up to 10−1 m2s−1.326
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The analysis of mixing per salinity class shows that the universal law of estuarine mixing pro-327

posed by Burchard (2020) is closely approximated by averaging over 10 tidal periods in a quasi-328

periodic state (Fig. 7a). For salinities below 22 g/kg (the maximum salinity that is not reaching329

the open boundary) physical mixing is dominating the total mixing with numerical mixing only330

contributing by about 30 % at most. Only in the coarse resolution region of the river plume at331

salinities larger than 30 g/kg numerical mixing is dominating (Fig. 7a). As further input to the332

calculation of effective diahaline diffusivity, volume per salinity class and isohaline area (Fig. 7b),333

and the mean salinity gradient of each salinity class, b−1 (Fig. 7c) are shown. Maximum values of334

b−1 of more than 10 (g/kg) m−1 are reached between salinities 16 g/kg and 23 g/kg. This means335

that for those salinity classes the isohalines are so much stretched out in longitudinal direction that336

the thickness per salinity class decreases below 0.1 m (g/kg)−1, see also Fig. 5b. With m, v and a337

(Figs. 7a and 7b), all parameters determining the effective diahaline diffusivities are present. The338

resulting diffusivities are shown in Fig. 7d. Kn increases about linearly from 1 · 10−5 m2s−1 at a339

salinity of 1 g/kg to a maximum of 6 ·10−5 m2s−1 at 7 g/kg and then decreases to 1 ·10−5 m2s−1
340

at 23 g/kg. A peak in effective diahaline diffusivity is generated by a combination of the mixing341

per salinity class and the isohaline area increasing with salinity and the volume per salinity class342

substantially dropping down above a salinity of 7 g/kg. For salinities larger than 23 g/kg, the effec-343

tive diahaline diffusivity reaches a relative high level of ≥ 2 ·10−5 m2s−1, with a peak of 1 ·10−4
344

m2s−1 at 24 g/kg, due to a high isohaline volume per salinity class and a consequently small dia-345

haline gradient. As for the mixing per salinity class, also for the effective diahaline diffusivity, the346

numerical contribution is high. Generally, effective diahaline diffusivities are substantially lower347

than the relative high instantaneous values of Kv > 10−2 m2s−1 shown in Fig. 6 for the well-mixed348

regions in the freshwater range, the bottom boundary layer and the well-mixed region near the349
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mouth. This can be explained by the fact that the mixing per unit volume, χ , is generally low in350

these regions, which has an impact on the mixing per salinity class, m.351

To analyze the spatial distribution of total mixing per salinity class, an integration along the352

transverse coordinate is carried out, such that total mixing per salinity class per longitudinal dis-353

tance is calculated, see Fig. 8. As a result, elevated mixing occurs over a large range of distance354

and salinity classes. Integration of the total mixing per salinity class and meter with respect to x355

results in total mixing per salinity class approximating the universal law (left graph). When inte-356

grating with respect to salinity, total mixing per meter is obtained, see the upper graph in Fig. 8,357

showing maximum values in the range −90 km ≤ x ≤ −80 km. However, this distribution does358

not follow a specific law. Together with the volume per salinity class per longitudinal distance359

(Fig. 9a), the effective total diahaline diffusivity can be calculated (Fig. 9b). There is a broad360

region in salinity and longitudinal distance where the effective total diahaline diffusivity is of the361

order of 10−4 m2s−1. At some distinct locations (−80 km ≤ x≤ −70 km, S ≤ 15 g/kg), elevated362

values of up to 5 · 10−4 m2s−1 occur due to a combination of localized high mixing and high363

volume.364

Using the information on mixing per salinity class and volume per salinity class for every water365

column, it is possible to calculate maps of the effective diahaline diffusivity, as shown in Fig. 10a-c366

for the example of S = 25 g/kg. In the well-resolved channelized region of the estuary (x ≥ −90367

km), diffusivities are dominated by physical values. They are highest in the deeper parts of the368

channel and reach values of several 10−4 m2s−1. Over the shoals, the diffusivities are about one369

order of magnitude smaller. In the region of the outer estuary (x ≤ −90 km), where the river370

plume veers to the right in downstream direction due to Earth rotation, the horizontal resolution371

becomes coarse, such that numerical mixing is comparable to physical mixing (Fig. 10b,c). With372

this, the maps of Fig. 10a-c represent the spatial distribution of the effective diahaline total, phys-373
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ical and numerical diffusivities that are accumulated to one value for each salinity in Fig. 7d.374

As an example, the effective physical diahaline diffusivity is Kphy
n (S = 25g/kg) = 2 · 10−5 m2s−1

375

(Fig. 7d), which can be interpreted as a weighted integral average of the spatial distribution of376

Kphy
n (S = 25g/kg,x,y) over all water columns x and y where the salinity of 25 g/kg is occurring at377

least once during the averaging interval.378

5. Discussion379

The major goal of this study is to develop a method to calculate effective diahaline turbulent380

fluxes and diffusivities, including a decomposition into physical and numerical contributions. The381

resulting method is based on the calculation of mixing per salinity class from which diahaline382

transports can directly be derived, see (14), as well as on the calculation of volume per salinity383

class, a concept which had already been proposed by Walin (1977). The method is robust in384

the sense that no interpolations to isohaline surfaces in numerical models are needed and that385

the resulting effective turbulent diahaline transport is always negative (i.e., down-gradient) and386

effective diahaline diffusivities are positive definite, except for unlikely situations when negative387

mixing by anti-diffusive advection schemes dominates the effective total diahaline diffusivity. The388

only inaccuracy in the calculation of the effective diahaline diffusivities is the determination of389

the isohaline surface for which we use the projection to geopotential surfaces. However, as visible390

in Fig. 5a, even in estuaries isohaline surfaces based on TEF analysis are relatively flat, such the391

error associated with their slope should be negligible.392

The main product of the present study are maps of the effective diahaline diffusivities, as shown393

in Fig. 10 for the isohaline of S = 25 g/kg. Such maps could be shown for all salinity classes and394

give a clear picture about the mixing hotspots and physical and numerical contributions. Effective395

diahaline diffusivities as statistical diagnostics for estuarine models are distinct from instantaneous396
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diffusivities which in well-mixed regions can be orders of magnitude larger. The calculation of397

effective diahaline diffusivities can be viewed as a complex weighted spatial and temporal averag-398

ing process, where high instantaneous diffusivities in well-mixed regions have small weights due399

to their small contribution to mixing.400

Although diffusivities are defined as the (negative) ratio between a turbulent flux and the as-401

sociated gradient of the transported property and as such their (un-weighted) average in time and402

space is not a useful property, they are key quantities for diagnosing mixing processes in the ocean.403

Using the Osborn and Cox (1972) and Osborn (1980) methods based on equilibrium versions of404

the tracer variance and turbulent kinetic energy budgets respectively, diapycnal eddy diffusivities405

can be calculated which in turn can be used to calculate diapycnal tracer fluxes.406

In ocean models, complex and computationally demanding turbulence closure schemes are used407

to compute eddy diffusivities (see, e.g., Large et al. 1994; Umlauf and Burchard 2005). Except408

for situations of double diffusion (Canuto et al. 2002) eddy diffusivities are assumed to be same409

for all tracers, a concept that underlines their relevance. However, in ocean models, when explicit410

horizontal diffusivity is not aligned with the diahaline surface, instantaneous diahaline diffusivities411

are different for each tracer, as seen from (5). Also, numerical mixing (and therefore numerical412

diffusivity) depends strongly on the tracer gradients and is thus different for all tracers (Burchard413

and Rennau 2008). Moreover, effective diahaline diffusivities as calculated from (17) depend on414

the tracer under consideration. On the other hand, a field and modeling study in the deep water of415

the Central Baltic Sea showed that the diagnosed profile of effective diapycnal diffusivity could416

explain the evolution of salinity, temperature and an injected tracer over several years (Holtermann417

et al. 2012, 2014). The method developed here can only calculate the effective tracer diffusivities418

orthogonal to isosurfaces of the respective tracer. Still, as shown in Fig. 10, it is a useful diagnostics419

for estuarine mixing processes and their representation in numerical models.420
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Whereas the salinity mixing per salinity class as well as the diahaline salt transport averaged421

over a long time converge towards theoretical limits (Burchard 2020), no such theories exist for422

isohaline volumes or effective diahaline diffusivities. Those depend on the individual dynamics423

of the estuary which in turn is mainly triggered by the bathymetry and the freshwater and tidal424

forcing.425

In estuaries salinity dominates density stratification such that the calculation of diahaline mixing426

and diffusivities are a relevant diagnostics for the dynamics. However, outside estuaries, density427

stratification is generally depending on both, salinity and temperature. Since in most ocean mod-428

els density is directly transported neither by advection nor by diffusion, physical and numerical429

mixing of density cannot be calculated directly. Instead, in order to diagnose diapycnal turbulent430

density fluxes and effective density diffusivities in ocean models, physical and numerical mixing431

of temperature and salinity need to be combined in a suitable way. Such a diagnostics would al-432

low adding spatial resolution to the bulk estimates of diapycnal diffusivities proposed by various433

authors (Griffies et al. 2000; Lee et al. 2002; Getzlaff et al. 2010, 2012; Ilıcak et al. 2012; Megann434

2018).435

6. Conclusions436

A method has been developed to diagnose effective diahaline diffusivities in numerical models437

of estuaries. It is based on the calculation of volume per salinity class and mixing per salinity438

class, the former having been proposed already by Walin (1977) whereas the latter has only re-439

cently been developed by Wang et al. (2017) and Burchard (2020). In numerical models, effective440

diahaline diffusivities consist of physical (from turbulence parameterizations) and numerical (from441

discretization errors of advection schemes) contributions and add exactly up to the effective total442
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diahaline diffusivity. The calculation therefore requires the analysis of physical and numerical443

mixing as introduced by Burchard and Rennau (2008) and Klingbeil et al. (2014).444

The method computes generally positive values for effective physical and numerical diahaline445

diffusivities for each salinity class and each water column (unless anti-diffusive advection schemes446

are used), whenever the respective salinity has occurred in the water column during the averaging447

period. Based on this water column information, effective diahaline diffusivities can be aggregated448

in various dimensions, either as horizontal maps of diffusivity for a specified salinity class, as449

function of salinity and longitudinal distance, or as function of salinity only, always showing450

physical and numerical values as well as the sum of both.451

These diagnostics help to understand where mixing is strong in an estuary and indicate where452

numerical mixing is high. The latter helps to plan measures for reducing numerical artifacts by453

choosing a higher model resolution, better advection schemes or, as the ultimate measure, to reduce454

physical mixing in order to limit effective total diahaline mixing to realistic levels (Ralston et al.455

2017). In the idealized simulations carried out in the present study, numerical diffusivities were456

on acceptable levels in the inner estuary, but due the coarse resolution of the outer estuary, they457

dominated the dynamics in the region.458
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Symbol meaning unit

aTEF, aEu TEF-based and Eulerian isohaline area m2

A instantaneous isohaline surface m2

Ar river transect area m2

bTEF, bEu TEF-based and Eulerian isohaline thickness m (g/kg)−1

bloc local thickness per salinity class m (g/kg)−1

Bloc accumulated local thickness m

f s diahaline salinity flux m s−1(g/kg)

f s
adv advective diahaline salinity flux m s−1(g/kg)

f s
diff diffusive diahaline salinity flux m s−1(g/kg)

Fs diahaline salinity transport m3s−1(g/kg)

Fs
adv advective diahaline salinity transport m3s−1(g/kg)

Fs
diff diffusive diahaline salinity transport m3s−1(g/kg)

~F s
diff diffusive salinity flux vector m s−1(g/kg)

Kh horizontal eddy diffusivity m2s−1

Kn diahaline eddy diffusivity m2s−1

Kn effective total diahaline diffusivity m2s−1

Knum
n effective numerical diahaline diffusivity m2s−1

Kphy
n effective physical diahaline diffusivity m2s−1

Kv vertical eddy diffusivity m2s−1

m mixing per salinity class m3s−1 (g/kg)

mnum numerical mixing per salinity class m3s−1 (g/kg)

mphy physical mixing per salinity class m3s−1 (g/kg)

M volume-integrated mixing m3s−1 (g/kg)2

~u velocity vector m s−1

un diahaline velocity m s−1

s absolute salinity g kg−1

v volume per salinity class m3(g/kg)−1

V accumulated estuarine volume m3

χ salinity mixing per unit volume s−1(g/kg)2

zTEF, zEu TEF-based and Eulerian isohaline position m

TABLE 1. List of variables including their meanings and units.

31



LIST OF FIGURES581
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FIG. 1. Sketch explaining the projection of the turbulent diffusive flux vector ~F s
diff to the diahaline direction.

The unit normal vector~n is pointing outside the domain towards higher salinity.
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FIG. 2. Sketch explaining the volume-integrated budgets with respect to the transect and the isohaline S.
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FIG. 3. Sketch explaining the isohaline volume and thickness by means of a finite salinity increment ∆S.

The gray area indicates the finite volume ∆V between the isohaline surfaces A(S+∆S/2) and A(S−∆S/2). For

the limit of ∆S→ 0, ∆V/∆S→ ∂SV = v, i.e. the infinitesimal volume per salinity class is obtained. The local

thickness of the finite volume ∆V is denoted as ∆n, that for ∆S→ 0 the infinitesimal local thickness per salinity

class, ∆n/∆S→ (∂ns)−1 is obtained.
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FIG. 4. Idealized convergent estuary model: salinity distribution during high water as gauged at x = 0. The

upper left panel shows surface salinity, the lower left panel shows a longitudinal transect (at y = 0 km), and the

right panels show a cross-sectional transect at three different locations (note the different horizontal scales).
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FIG. 5. Idealized convergent estuary model: averaged salinity distribution and isohaline positions at the

centerline of the estuary (y = 0) resulting from TEF-based (panel a) and thickness-weighted (panel b) averaging.

Isohalines are shown in steps of ∆S = 1 g/kg. The red line represents the position of the isohaline with S = 25

g/kg.
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FIG. 6. Idealized convergent estuary model: eddy diffusivity Kv (color code) and salinity s (isolines) during

full flood (panel a) and full ebb (panel b) at the centerline of the estuary (y = 0).
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FIG. 7. Idealized convergent estuary model averaged over 10 tidal periods during a quasi-periodic state:

properties defining effective diahaline diffusivities as function of salinity. a: physical, numerical and total mixing

per salinity class in comparison to the universal law m(S) = 2SQr; b: area of isohaline S, a(S), and volume

per salinity class, v(S); c: resulting averaged salinity gradient, b−1; d: effective physical, numerical and total

diahaline diffusivity. The vertical hatched line indicates the minimum salinity which reaches the open boundary.
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FIG. 8. Idealized convergent estuary model averaged over 10 tidal periods during a quasi-periodic state:

mixing per salinity class and longitudinal distance, ∂xm(S) (panel a), mixing per salinity class, m(S) = ∂SM(S)

(integrated along the estuary, panel b), and mixing per longitudinal distance, ∂xM(S) (integrated over salinity,

panel c).
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FIG. 9. Idealized convergent estuary model averaged over 10 tidal periods during a quasi-periodic state:

volume per salinity class and longitudinal distance, ∂xv(S) (panel a), and effective total diahaline diffusivity as

function of salinity class and longitudinal distance, Kn (panel b).

644

645

646

41



FIG. 10. Idealized convergent estuary model averaged over 10 tidal periods during a quasi-periodic state: total

(panel a), physical (panel b) and numerical (panel c) effective diahaline diffusivity across the 25-g/kg-isohaline

as function of x and y. Note that the x and the y axes have different scalings.
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